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ABSTRACT

¥

/'In many applications one meets systems of differential eguations which

consist of first-order hyperbolic and second-order parabolic subsystems which
are nonlinearly coupled. These arige, for instance, in the modeling of motion
of a compressible, viscous heat conducting fluid, in radiation hydrodynamics,
and in the theory of motion of viscoelastic materials. The relevant equations
. are presented herein<
The results of this work are local time existence and uniqueness theorems
for initial-boundary value problems, including cases with free boundaries, for
such systems. The results given are for the case of one space dimension. The
methods used involve introducing appropriate variables, the method of
iteration, a priori estimation and fixed point theorems. 4’ B
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BOUNDARY VALUE PROBLEMS AND FREE BOUNDARY PROBLEMS
FOR QUASILINEAR HYPERBOLIC~PARABOLIC COUPLED SYSTEMS

Ta~tsien Li*, Wen-tzu Yu**, and We-shi Shen**r

Do 1T TUUCTION:

here we handle with so-called quasilinear hyperbolic-parabolic coupled systems which
sften oceur in applications. Roughly speaking, in this xind of system a part of equations
formulate 4 first order quasilinear hyperbolic system with respect to certain unknown
fuactions g = {u1,...,un}, another part of equations a second order quasilinear parabolic
system #ith respect to the cemainder of unknown functions v = {v1,...,vn}, and these two
parts are nonlinearly coupled each other. For instance, the system of motion for a
compressitle viscous, heat-conductive fluid“l, the system of radiation hydrodynamicslzl,
che svstem of wotion of viscoelastic materiala[3l etc. are of this kind.

The initial value problem with smooth initial data has been studied by several
z1thnesg. For example, for the system of motion for a compressible viscous, heat-conductive
fiuil in 3-dimensional case, J. Naah[4] and N. IcayaIS]lG] have proved the existence and

e uniquencss of the local smooth solution. Recently, A. Matsumura and T. Ntshida[7](14]

P tse even proverd the corresponding global existence theorem for the small initial data.
¥ vhe quasilinear hyperbolic-parabolic coupled system, the boundary value problems,
caipcctally the free boundary problems are more important in applications, because the
“at+or io concerned with determining the corresponding discontinuous solution which can
arscribe, €. instance, the behaviour of a fluid containing a radiation shock in radiation

hyovodynamiecs.  but for the boundary value problems, especlally for the free boundary

can enly find certain results in some special cases even for one-dimengional
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case (for instance, A. Tany [8] has discussed the mixed initial-boundary value problemg for

the system of compressible viscous, heat-conductive fluids in a cylinderical domain with a *
special Dirichlet boundary condition: the velocity ; = 0 and the absolute temperature

T = T,(t,x); A. V. Kazhikhov and V. V. shelukhin[9] have considered the corresponding '

one-dimensional initial-boundary value ; blem with the boundary data:
u(t,0) = u(t,1) = Tx(t,O) = Tx(t,1) =0, >0

Moreover, A Tan1(15) has also studied a free boundary value problem for compressible
viscous fluid motion etc.). So it is worthwhile to carry out a systematic research on this
subject.

In what follows we shall concentrate our attention on the boundary value problems and
the free boundary problems for the following general types of quasilinear hyperbolic-

parabolic coupled systems in one-dimensional case:

Type I: '
n du du
I Clj(t,x,u,v)(szl + Xl(t,x,u,v,vx) 3;1) = ul(t,x,u,v,vx) (L= 1,...,n) (1.1) .
J=1
3y - a(t,x,u,u ,v ) 23! = b(t v.) (1.2)
K a(t,x,u, ! le 3,‘2 leul“xlvl x) ! .

where v = (v1,...,vm)T is a vector function and a is a diagonal matrix:

a= diag(a1,...,am)- On the domain under consideration, we suppose that
detl(ljl +0

and

ai >0 (A= 1,000,m) .

In this system, (1.1) is hyperbolic with respect to u = (ul,...,un)T (under the
characteristic form with the characteristic directions g% - Al (L= 1,.00,n)), (1.2) is
parabolic with respect to v and (1.1), (1.2) are nonlinearly coupled each other. '
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Type II.
n du du
321 Czj(t,x,u,v)(ﬁl + Al(t,x,u,v,vx) -rxl) =
(1.3)
) ?
Cz(t,x,u,v)(sf + Xl(t,x,u,v,vx) -3-:5) + uz(t,x,u,v,vx) (L= 1,...,n)

9 )
-5% - a(t,x,u,v,vx) --‘21 - b(t,x,u,v,vx) ’ (1.4)
Ix
in which the coefficients a and b don't depend on u,, but on the right-hand side of
(1.3) there is an additional term which denotes the directional derivative of v along the
ax
characteristic direction x- Xl.

Our goal is to discuas various kinds of boundary value problems and of free boundary
problems for these systems in a class of smooth functions or plecewige smooth functions and
give a condition of local solvability in order to obtain the corresponding existence and
unigueness theorem, The results chtained by us can be applied to many practical cases and
imply an affirmative answer for a conjecture given by C. M. patermos(3] about the

incomplete parabolic damping.

2. EXAMPLES.

1. System of motion for a compressible viscous, heat-conductive fluid.

In one~dimengional case the system can be written as follows

.g_:..p“.g%--p%, (2.1)
du du 123 du 1

RS LTS AU RF L SR 2-2)
¢ 37 13 (x 31‘} u (3\:)2 *piau (2.3
Tet U T ors, W VW T ors) 5. - -3

where t | time, x : spatial coordinate, ¢ : density (p > 0), u : velocity,
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P : pressure, T : absolute temperature (T > 0), S : entropy, M : coefficient of
viscosity (u > 0), A : coefficient of heat conduction (XA > 0), £ : outer force which is
a given function of (t,x), and p,5,4,A are given functions of (p,T).

It is easy to see that in this coupled system (2.1) is a single first order
(hyperbolic) equation for o, (2.2), (2.3) is a second order parabolic system for (u,T).
So, this system is of the following form of quasilinear hyperbolic-parabolic coupled

systems:

n du du
J 3
321 Ctj(t,x,u,v)(xiiv Xl(t,x,u,v,ﬁ] Ki) - ul(t,x,u,v,ﬁ) (L =1,...,0) ,
(*)

v Py du 3y
% a(t,x,u,-b;,v) ;—.‘; - b(t.x.u.}:avn‘s;) ’
X

in which Xl and U, are affine functions of r = gi-, a doesn't depend on g% but b
does. Obviously, (*) is a special case of the system of type (I).
2. System of radiation hydrodynamcis,

In order to determine the motion of a fluid with very high temperature we have to
consider the hydrodynamics in the presence of a radiation field. For the one-dimensional
unsteady flow, under the diffusion approximation the cogxresponding system of radiation

hydrodynamics can be written in Lagrangian representation as the following conservation

law:
3r _ 3 -0
il PR
3\; 3(p + p\)) 0
*° ax =0
uz azv
e + S5+ T2 ) . utp + p,) - DP };—} o
9t - 9x
in which

T = % : specific volume,

p = RPT : pressure, R = constant > O,
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o
p, = % T  : light pressure, a = g— c : light speed, ¢ = constant > 0,

T=1 : inner energy, Y : adiabatic exponent,

E, = 3pv = aT4 : radiation energy,
Lc

D= T 2 = pr® (A, @ > 0 constants): Rosseland mean free path.

Taking (u,P,T) as unknown functions, the system can be written as

3 p 16 0 _ 3 o7
/RT (at +o/RT 52) + o(gp + o/RT ) = -o(RP + = 2 T) 3, (2.4)
= (3 _ 3py _ (du _ duy 160, 3 T
wr (52 - ofFT ) o3y - ofFT 3] = P(RP + 2T By e (2.5)
(R, 160 21) ¥t 16a0 3+a 2’z 16A0 30 3p BT
Y-t 7 ¢ p’ %" 3 n? 3 3x Ix
(2.6)
16 A0 2+a, T2 160 _4 du
-3 (3 +ajer () +(Sgr +err)gi=0.

It is clear that (2.6) is a single second order parabolic equation for T, and (2.4),

(2.5) is a first order quasilinear hyperbolic system for ¢ and u (with the

characteristic directions dx _ A
dt 1,

2 ™ £p'RT), then (2.4)-(2.6) is also a special case of

system (*).

3. System of one~dimensional viscoelastic materials of the rate type

a ~v_=0
X

t ’
(2.7)
v, *+ p(u)x = Vex
and gystem of one-dimensional thermoviscoelastic materials
ut - vx =0,
vt + p(“le)x - VKX ]
(2.8)
v2
] - - '
letu,®) + =1, + p(u,O)vl - (vv ] =8  (eg>0)
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are both a single first order (hyperbolic) equation for u coupled by a parabolic equation

or system respectively.

System of one-dimensional thermoelastic materials

“t-vx-o'

- []
vt + p(u,@)x 0, (pu <0,

(2.9)
v2
— 1]
[e(u,8) + 3 T, + [p(u,e)v]x - exx (ef > 0)
is a hyperbolic system for u and v coupled by a single parabolic equation for 9.
These systems are of the form (¥).
4. System of a model of nerve impulse propagation
u, = r(x)uxx + Foluw ,
(2.10)
v, " G(u,w)
and system of reaction-diffusion
2
9 9
u o ‘a—: + f(u,v) ,
x (2.11)
v
* - 9.V

are obviously of the form (*).

S. Moreover, certain higher order equations can be also reduced to a hyperbolic-
parabolic coupled system, for instance, we consider the following problem (see J, M.
Gteenbetq”ol' J. M. Greenberg, R. C. MacCamy and V., J. Hizel“”, also see J. L.
Llons“zl s

3u

2
—_— -— =0, 0<x<t, t>0 (A>0),
3:2 x Kaxz

u(o,t) = u(1,t) =0, (2.12)

]
a(x,0) = u (x), ¥o (x,0) = u,(x) .

! r“}'. v
e




Taking
- du - du
e YT

as new unknown functions, this problem is equivalent to the following one

2
du dw v v dw v
LG Ttk ~Uh D e

v{0,t) = v(1,t) = 0 , (2.13)

u{x,0) = uo(x), w{x,0) = “")(x), vix,0) = u1(x)

in which the first two equations formulate a hyperbolic system for u and w and the last
one is parabolic for v, 8o this system is of the form (%), too.

Now we shall point out that in many cases by means of adding certain new unknown
functions some problems for system (*) can be equivalently reduced to a corresponding

problem for the system of type (II), for which the existence and uniqueness theorem seems

somewhat easier to prove.

Exn_ggle 13 Consider Cauchy problem:

n du du
Z Clj(t,x,u,v)(ﬁi + X‘(t,x'u,v,vx) rxi) - ul(t,x,u,v,vx), (L= 1,.00,n) , (2.14)
3=1

2

L]

'5% - a(t,x,u,ux,v) _a__\zl - b(t:xl“r“xlvovx) v (2.15)
Ix

t=0:u=vix), ve=px), (2.16)

in which Xl and u‘(l = 1,...,n) are affine functions of r = -:—:. Set

du
Vj = EJ' (3 = Y,600,n) ,

differentiating (2.14) with respect to x and using equation (2.15), we can prove that

u,v and w satisfy the following Cauchy problem

-7-




n du 3
521 Czj(t,x,u,v)(ﬁi + Az(t,x,u,v,vx) 1&1) - ul(c,x,u,v,vx) '

n dw w
i b | - )
321 c‘j("x'u'v)( t + Al(tlxluvvuvx) X ) - Cl(t,x,u,w,v) ('5:? + Al %)

+ ;‘(t,x,u,w,v,vx). (t=1,..e,n) , (2.17)
dv %y
vl a(t,x,u,w,v) F- b(t.x,u.v,v.vx) '
X

t=0:u=¢¥(x), w=9¢'(x), v=1¥x)
in which

n

- u, Ay ¥y
C!(t,x,u,w,v) - (-5?- - 3-21 ‘lj ‘' TR wj)/a(t,x,u,v,v), (r denotes 5—;) .

- duy 5 duy Wy 3y 3 (”z i Ny :
Wy (t,x,u,w,v,r) = + w, + - [P + v,
) > kﬂi‘:k W % 4o1 NI k_,'ﬁk'k

an n g n 3% ax n
L 3y ] ] 24 v %, _= -
* 555 - 321 ('rxi + k§1 o, "kt ‘571 %) k_zﬂ DAL RISl

are determined by the coefficients and (Cjk) is the inverse matrix of (tz’).
Conversely, if (u,v,w) is the solution of problem (2.17), then we can prove that

)
(u,v) 1= the solution of the original problem (2.14)-(2.16) and w = ﬁ.

Example 2: Taking
dw
s =3
as an unknown function, problem (2.13) is equivalent to the following problem of type (II):

-8-
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du - dw dv 3s 1 (dv v 32v
It v,ﬁ'g-;,ﬁ-x(w-z(w)s],x-z(w)s-xﬁs0,
vio,t) = v(1,t) =0 , (2.,18)

u(x,0) = uo(x), wix,0) = ua(x), 8(x,0) = ua(x), vi{x,0) = u1(x) .

Here, we can find out that on the right-hand side of the third equation, there is a

directional derivative of v along the characteristic direction g% = 0 and that

(R, 2w 3s)
ax’ Ix’ Ix’*

Hence, in order to explain our results and methods, in what follows we shall take as

a=13, b=E(w)s don't depend on

an example the second initial~boundary value problem for the system of type (II). All
other kinds of problems (such as the Cauchy problem, the first initial-boundary value
problem, the initial-boundary value problem with interface etc.) can be discussed in a

similar way and the similar results for the system of type (I) hold true, too.

3. SECOND INITIAL-~-BOUNDARY VALUE PROBLEMS.

On a rectangular domain

t
R(8) = {(£,x)|0 € ¢ €68, 0 < x <1} I I (3.1)
0 1 x

we consider tl.c second initial-boundary value problem for the system of type (II):

du

n du
9 3
j§1 ‘tj(t""“'v)(ﬁl + Xl(t,x,u,v,vx)ﬁi) = C,_(t,x.u,v)(rz + A,'(t.x,u,v.vx)-si]

(3.2)
+ uz(tuxrulvlvx)' (2 =1,00,n) ,
v 32v - b
3% " a(c,x.u,v,vx);—a (t,x,u,v,vx) . (3.3)
Without 10s8s of generality, the initial conditions may be written as
t=0:u=vs=20, (3.4)

-9-
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Moreover we can suppose that

a(0,x,0,0,0) =1 (3.5)

(Otherwise, use the transformation of independent variables

x
e —%
0

and that

FALY

(to this end, it is sufficient to i

<)

e

Under the hypothesis (3.7), the

The boundary oonditions are as

on x= 1, u

v
Ix

on x=20, u.
8

dv
x

)

"(OIEIOIOIO)

»(0,x,0,0,0) =0 , (3.6)
- 1, =34
x,0,0) = sz = { 0, L #} 3 (3.7)
ntroduce the transformation of unknown functions

= v - tb(0,x,0,0,0) ,

n
" ) Tyy(0,%,0,00u,) .

3=t

(L= 1,..0,n)

follows:

Gx_(t,u,V)
= r+(t,u,v) '
= és(t,u,v)

= F_(t,u,v) .

3

are called the diagonal variables.

(r=1,s¢es,h; h€n) , (3.8)
(3.9)
(8 =%+ 1,.0.n; kK20), (3.10)
(3.11)

. Here the boundary conditions for v are of Neumann type, so this problem is called the

second initial-boundary value problem,

We assume that the following oonditions are gatisfied:

-10-
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(1) Conditions of orientability:

Tyeee,h

)-!(O,hOpU;O) < 0, As(0:110'°'°) >0 (: : h+ t,e0e,n" "' (3.12)
2.(0,0,0,0,0) < 0, A.(0,0,0,0,0) > 0 (£ = Teeeesk ) (3.13) ’
£ e ' g =k + 1,000, " )

As usual, the characteristic directions are called departing characteristic directions on
the boundary, if as long as time increases, they go towards the interior of the domain.

t

Thus, on the boundary, the number of boundary conditions for u is equal to the number of
departing characteristic directions. For example, on x = 1 the number of boundary
conditions for u is equal to h, the number which appears in (3.12).

(2) Conditions of compatibility:

Gr(0,0,0) =0, 63(0,0,0) =0 (r=1,.s0e,h1 8=k + 1,e¢.,n) , (3.14)
3Gr n 3Gr
Bt_ (0,0,0) + jz F\q (oIOIO)uj(olilololo) = ur(or1:o:°po) ]
-1
~ (3.15)
3G§ n aés
It (0,0,0) + 321 5;; (0,0,0)Uj(0,0,0,0'U) = ua(O,o,o,O) ’

(r = t,e00,h7 8§ =k + 1,000,n) ,

Pt(OIO.O) =0 . (3.16)

(3) Conditions of smoothness: the coefficients of the system and the boundary conditions

are suitably smooth, For simplicity, we omit the detail here.

-11-
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By means of certain a priori estimations for the solutions of the heat equation and of
the linear hyperbolic system, using an iteration method and the Leray~Schauder fixed point
theorem, we have proved the following

Theorem: Under the preceding hypotheses, suppose further that the following

conditions are satisfied:

3
det|8 . - 3= (0,0,00] #0  (r,r' = 1,..0h),
rl

- (3.17)
%5
an = # 8,8"
deth.., Tﬁl (0,0,0)1 0 (8,8' = k + 1, M) .
i.e. the boundary conditions may be rewritten as
on x= 1, ur'Hr(t,us,v) (r=1,se0,hy 8=h + 1,...,n)
(3.18)
]
ﬁ - P#(t,u'v) ’
on x =0, u; = Hsn:,u;_,v) (E=1,000,k2 8 =X + 1,000,n)
(3.19)

g—; = F_(t,u,v) .

then, the seocond initial-boundary value problem admits a unique local classical solution on

R(§) where & > 0 is suitably small,

4. IDEAS OF THE PROOF.

1. A priori estimations for the solutions of the second initial-boundary value

problem of heat equations:

2
vy ¥
r--—-&b(tx) v
t sz !
t=0:v=0, (4.1)

] ]
x-O:ﬁ-w,(t); x-1:ﬁ-¢2(t) .

aQ
-,a

2
Suppose that on the domain R(5o), v, () e C', v, (0) =0 (i =1,2) and bit,x) €C

(0 <a < 1), where

-12-
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a . "
CB' = Holder space of functions £ such that f is HOlder continuous with respect

to t and to x with the exponents B and & respectively (0 < a, B8 € 1),

then it is well known!'?] that problem (4.1) admits a unique classical solution v on

R(S ) with
0 t 1 t
vit,x) = [ [ N(t,x;T,E0b(T,EyakdT + [ N(E,x1 T, 1)y, (T)AT
0 o 0
t
- | Next,00 (Dat,
0

v t Y antexit,6) £ aN(e, X T, 1)
3 (tex) = ({ g == b, f)akdT + g iyt v (nar

t
- IN(t,x37,0) e.(rar , (4.2)
X 1
]

32v t 132N t
= (e = [ J =5 (£, TEN(B(T,E) = b(T,x))AkAT + ) N(t,x1 T,1)§, (T)aT
Ax’ 0 0 dx 0
t
- N(t,x;T,0)p,(T)dT ,
0
v t 1oy !
3o (tx) = [ J 3 (Lo T, (B(T,E) - blt,E))akar + [ Nt x10,E)b(t,E)aE
0 0 0

t t
+f N, x3T, 1), (1) AT = / N(t,x1T,0)p,(T)AT ,

0 0
in which
d
Jim =37 %0 (1 =1,2),
)
Nt t,6) = [ (G (t,xst,2n + E) + G (t,x;T,2n - )] (4.3)
ne= -9 Y 0

is the Neumann function for the second initial-boundary value problem of the heat equation

and
x5

Go(t,xJT,E) -—— e At =1 (¢ 2 1)

27%(e - 1)

(4.4)

is the fundamental solution of the heat equation.

-l3-
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Moreover, on R(5O) vec (0 < @< 1), where
1+a a
=2+a of 3r 3°f f 2 3¢ 3 2°
c - {tlf, T’ 3t ;:5 continuous, ™ ec B ;:5 ec } . (4.5)

on R(S), v§8 0<d« 60, introduce the following norms:

1£8 = sup le(e,x)| ,
(t,x) @ R(S)

1€(e ) -flr,_ )| le(t,x )~£(t,x.) |
H:[f] a sup ———1—2—, u%(e) = sup 1 2_, (4.6)
(t,lx)l(tzlx) 't"tz' (tlx1)l(tlx2) ’x1'x2,a
e R(%) e R($)
3
a'(e) = wle) +HJIE) (0 <a, BN,

Using the preceding expressions and the property of the fundamental solution, after

a long calculation we have obtained the following three a priori estimations on

R(G)v6,0<6<60:

v Vo Vo .
10, vl 323 vl + IK‘ < c1(6 Il + lpl) or vl < C,(ﬁ Ibl + 8050) (4.7)

2
v v 12 v
20, lvl1 bl vl + l,;l + lale + H( {5;1

a \ (4.8)
Cc (Ibh + 82%b) + Aty (v, = el + 130)
2 % 1 1
1a 2
2 v @ dv a 9%y a
3o, lvl2 et lvl1 + Ht [3;] + H ‘a:] +H [ale < c3(|b| + H (b] + le,) . (4.9)

in which C1 (i = 1,2,3) signify constants depending only on 60.

2. A priori estimations for the solutions of the following initial-boundary value

problem of first order linear hyperbolic systems:

-14-
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n du_ du,
2
321 Tyt (ggd + Ayt 54) = £yt (32 + Aglt, 0 79 + uyt,0)

(£ = 1,00e,n) ,

t=0:u=0,

(4.10)
n
x=1; 321 TeylEahuy = ¥ (8) (r = 1,e00sh 7 h S 0) ,
n -
x=0: ) L. (t,00u, = $.{t) (&=k+ Y000, k?0),
g=1 8) b} [}
in which v = v(t,x) is a given ¢! function and we suppose that on R(Go)
dot|513(t,x)| 0 (4.11)
and
clj(O'X) - Glj . (4.12)
We suppose further that the following conditions are satisfied:
1°. Conditions of orientability:
on x= 1, Xt(t,1) <o, X.(t,1) >0 (r=1,iee,ht s =h + 1,...,0) ,
(4.13)
on x =0, Xi._(t,O) <o, Xi(t,o) >0 (F = 1,000,k 8= Kk + 1,000,n) .
2°. Conditions of compatibility:
v.(0) =0, ¥:(0) =0,
dv v - r=1,¢0e,h
' 0,0 (FF (0,1 + A0, gz o)+ uo,n = v o, (U0 ) e
! ] ] A
, v v -8
‘ 53(0,0)(32 (0,0) + 16(0.0) = (0,0)) + ui(0,0) V§(°) .
1 3°. Conditions of smoothness.
) Usually, for the initial-boundary value problem of first order linear hyperbolic

systems, the term on the right-hand side of equationeg should be assumed to be continuous as

well as its first derivative with respect to x. 1In the present case, since v(t,x) 1is

=15~

v ¥y ks I
[ 25T e LA
et e

. ™ .’f"%w

e <o ettt




.

1

a C function, %% + Xl(t,x) %% is only continuous. But, noticing that it is the

directional derivative of v along the characteristic curve %% - Al(t,x), we can
integrate by parts this term :z[%% + A‘ %%) when we integrate the system along the
characteristic curve, then we can prove as usual that problem (4.10) admits a unique

1 1+8 1 3¢ 2f 8,8
classical solution u on R(Go) with uecC or v@c {(tirec S T T ec }
under the different hypotheses of amoothness respectively.

Introduce the following classes of functions:

1 1
To = (o 8g0 vy, ETH T x;(:,o)} ’

£14 F14 14 T
L3 P 5| X 2 S
Py {8y =5t o Sae 30 30 M detl(ljl} ' (4.15)
r-ru{n"u uy 1 1|
27 0 T P W Xt(t,t . Xi(t,o)
(L,3 = 1,000,017 T = 1,000,h; 8 =m+ 1,000,n)
and the following norms of functions on R(S8) (0 ¢ & ¢ 60)
du du
lul1 - Iyl + lﬁl + l};' ’
L] u du
I\;|I1 = ful + |~5:I + ell-;l '
(4.16)
B du 8 3u
'“'103 = |u|1 + H.[E] + H.[‘s;] *
. . 8 3u B du 8 3u
b o= tuly + B3] + elu (5] + H150) o
where
[ 8 [
Holf] = BO(£] + HOIf) (417

and the constant € > 0 will be suitably chosen later on. By means of the integral
L] L]
relations satisfied by u(t,x) and by 3%, 3% respectively, after a long calculation we

have established three a prior{ estimations on R($§) ¥ 60 >8>0 as follows:
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10 hal € (1 + x15)lol + (Ho + K16) vl + x16lul (4.18)

in which constant K, depends only on the norm ll"l on R(6o) and

H =2 sup I8, (t,%) ] &
0 L=1,..0,n '
(t,x) e R(5o)

1

hd - ]
20, lul1 < (1 + do € + xzd I + (xo + K25)(1 + lvli) (4.19)

provided that Xl,ul are Holder conti with respect to t with the exponent B8, in

which d = min {=x_t0,1),2.(0,0)}, x
1<r<h r 8
k+1€8€n

o depends only on the norm Irol on R(Go)

and K, depends only on the norm lel and n:[rol on R(Go).

3e, o’ 2

1+8 (4.20)

=1 - 8 8
€ (1t +2 do €+ do €+ 126 )utm + (1(2 + 136)(1 + 190 + Ivh

148)

provided that all the functions in Pz are HOlder continuous with respect to t and x
with the exponent 8, where Ky depends only on IP2I and HE[PZJ on n(Go).

3. Introduce the following saets of functions on R($):

2

5,6 = {tuwiuec, vec!, 3—§ e c®, ul0,x) = v(0,x) = 0} ,
Ix
] 1 a
—
5, = {umiuec 2 v ec™®%, wo,x) = v(0,x) =0,

(4.21)
i v
3t (00 = B,(0,%,0,0,0), 3¢ (0,%) = o} ,

.
ful <A,

*
ful <
u A 2

L8 = {tuwiitu,m e L&), tal <Ay, b <A,

wa

< et < <
Wl < B, Ivd B, I, 52}.

-17-
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where Ai'ni (1 = 0,1,2) are positive constants to be chosen later with

< < < B.. '
Ay SA S A, B <B <B,

For any (u,‘;) e 21(5), according to the preceding points we can define an iterative

operator (u,v) = T(;,;) by means of the following linear problem

du ~ 3u !
z cgj(t VX,0,V) ('5—1 + h(t.x,u.v,g%)}-;i) '

~ ~ (3¢ ~ ~ 3y 3y ~~ v
- (l(t:x'“l") (ﬁ* A (tlxl“lvlr)'r:) + uz(tlxlurvrrx!) (L= 1,000,n) ,

2
) Ay ~ ~ 3y
5-! - —-— - b(t,x u,v,r) + [a(t,x,u,v,x) - 1]—
t=0: u=0,vs=20, (4.22) .
|
x=1 § (e,1.5(t,1),3(c.1)uj = G_(t,u0E,1),¥(e, 1))
I=1

+ 121 (€4 (E1,8E,1),9(E,1) = 8 )u(e,1) 2 ¥ (b),

re 1,,es,h,
v -~ ~ -
5; (t,1) = r+(tl“(tl1)lv(tl1)) = W+(t) [

x = 0 EC*

(t, O,u(c,O),v(t,o))u "G (t, u(t: 0),V(t,0))
=1 8] b

+ j§1 (caj(e,o,i(e,o),;(c,o)) - G‘j)Gj(c,O) 2o (t), &= keleuin,

3 - -
33 (€,0) = P_(t,u(t,0),v(¢,0) = v_(¢) .

For the time being, we suppose that 1
n 3Gr n Ai : !
PogE oo, IR0, (4.23) :

=1 b] i=1 b !
- 1
-18- :
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Then, using the preceding a priori estimations, we can choose a small constant € > 0 and
constants A ,A.,M,, B ,B,,B, such that the operator T maps J(8) into itself, if
§ > 0 1is suitably small. Because 2(6) is a nonempty convex, closed, compact subset of

the Banach space Z.(G) provided the norm

2
Ha,n)t, = tat, + vl + 123
hd 1 1 32
x
and T 1is a continuous mapping from 2(6) into itself in this space, accwrs. : + Leray=

Schauder fixed point theorem this operator (u,v) = T(\:,;) has a fixed poic 3,v- which
is the solution of the original quasilinear problem on R(§). The uilca®ic- +f “he
solution can be proved as usual by means of the corresponding a priori & . 7=y Sons.

4, 1In order to finish the proof, we have to point out that the meatrac' ion condition
(4.23) can be realized under hypothesis (3.17). In fact, under this hyrothesis the
boundary conditions can be written as (3.18), (3.19). Then, introducing a transformation
of unknown functions

u, = Loy, (4= 1ee,m)
and multiplying the 2L-th equation of (3.2) by Il(x), vhere

Ii(x) =-ax + bi“ - x)

i
with a’ - b? =1, ar - b‘ > 0 small enocugh, it is easy to see that the problem for
(u,v) satisfies the corresponding contraction condition (4.23) as well as all the

hypothesis of the theorem, so the theorem is proved.

5. SECOND FREE BOUNDARY PROBLEMS.

On a domain
t x = x(t)

R(&) = {(t,)|0 €t <8, 0¢x<x(t)]},
Rl 4

[} 1

where x = x(t) is an unknown boundary curve, we consider the following second initial-
boundary value problem with free boundaries (for simplicity, called the second free

boundary problem):

-19-
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n du du
3 )
321 ‘lj(tlxl“lv)(szi + xl(tlxlulvlvx)s;l) - Cl(clxlulv)[sf + XI(C,X,U,V,Vx)gf)

+ ul(t.x,u,v,v*) (L= 1,.00,n) ,

2
d 9
3% - -(:,x,u,v,vx);;§ = ble,x,u,v,v ), (5.1)

t=0: u=v=0,

x = 0: u - éi(t,u,v) (8 =k + 1,.00,n7 K >0) ,

dv
5; - F_(tl“lv) ’

x = x(t): u = Gr(t.x.ucv) {(r=1..,ht h<n),

3
5% = P+(t,x,u,v)

and
dx(t)
at

- D(tlx'ulvlvx)l x(0) = 1,

which is an ordinary equation to determine the free boundary x = x(t) in the procedure of
solution.

This kind of problem can be met in the motion of the fluid with radiation shocks.

We asaume once more that the corresponding conditions of orientability, of
compatibiity and of smoothness hold true. For instance, we assume

Xr(0,1,0,0,0) < p(0,1,0,0,0), X.(0,1,0,0,0) > D(0,1,0,0,0) ,
1 (5.2)
' X;(0,0,0,0,0) <0, la(0,0,0,0,0) >0
I

(£ = Y,e00,h, s=h 4+ 1,,.0,n £ = 1,000,k, 8=K+ 1,000,0) &

l Here the essential difficulty consists in the presence of the free houndary curve, but,

using the transformation of independent variables

t=t, x= 5 (5.3)

the domain R(8) 1is reduced to the domain

.




R = (E010<T<8, 0<x e "

with fixed boundaries, now the coefficients of the system and the boundary conditions

depend on x(z) such that they are certain operators of (u,v), That is to say, we obtain
2 second initial-boundary value problem in functional form as follows (where (t,x) is
again replaced by (t,x)):

n 3 du
3y v
351 c,'j(t.xlu.v)fﬁi + Xl(t.xlu.v);i) = cl(t,xlu,v)(x + Kl(t.xlu,v)'é;)

¥ By lt,xlu,v) (L= 1,...,n) ,
2
2
% =~ a(t,x|u,v) —; = b{t,xlu,v) ,
¥x
(5.4)
t=0: u=vago,

= 1: t
x 1 ut - G!( la,v) ,

%:- = F (tlu,v) ,

- . = Ga(t|u,v
x 0: “.-.(lul)l

?
e F_(tluw) ,

where
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:lj(t,xlum) - Clj(t.x(t)x.u.v) P

2 1
Agtt,xlu,v) = (A (€, x(t)x,u,v, e _—x(t)) - x'{t)x)/x(t) ,

Cl(t,xlu,v) = cl(t,x(t)x,u.v) v

(5.5)
L)
uy(t,xlu,v) = ul(t,x(t)x,u,v, % . 3:-(:_)) .
2
a(t,x|u,v) = a(t,x(t)x,u,v, g% . ;%ET)/R (v) ,
' 3
blt,xju,v) = b[c,x(t)x.u.v. -g% . ﬁ-) + % 5—:— H
G{(tlu:v) - Gr(t.x(:).u.v) v
éa(tlu,v) - aa(t,u,v) . (5.6)
F’(tlu,v) = r*(t.x(t).u.v\ x(t) o
r_(tlu,v) = F_(t,u,v) *x(t)
and x = x(t) is defined by
g:i—tl - D(tlx(t)l“(tl‘)lv(t")l % (tl1).x_:-t—)) (5.7)

x(0) =1,

For the second initial-boundary value problem in functional form we can prove that the
situation is similar to the second initial-boundary value problem, then we can obtain the

corresponding condition of solvability for the original second free boundary problem as

follows:

3G,
dot|6ai - TJ! (0,0,0)] * o0, (8,8 = kK + 1,000,n)
s

" (5.8)
det|6 . - x=£(0,1,0,00] #0 (r,F=1,..0m)
r
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i.e. the boundary conditions can be written as

x = 0: us = Hilt,us,v) (f = 1,000,k 8 = K+ 1,000,n) ,

) .
T‘XL = F_(tlulv) .
(5.9)

x = 13 ur - Hr(t,x,us,v) (r = 1,¢00,hy 8 =h + 1,...,n)
9
3% - F’(t,x,u,v) .

6. VARIOUS REMARKS.
1. In the case where the given boundary x = x(t) 4is the k-th characteristic curve,
we can consider x = x(t) as a free boundary with the condition
dax dv
ax " Ak(t,x,u,v, ;;), x(0) = 1. (6.1)
Using the preceding transformation we obtain again a second mixed initial-boundary value
problem in functional form.
2. In a similar way we can also solve the following problems:
1*, the Cauchy problem;

2°, the first mixed problem with the boundary conditions:

x=0: uy= é;(t.u,v) (8= Kk + 1,000,0)
ve= !_(t,u)
x = 1: u - Gr(t.u.v), (r = 1,00s,h) (6.2)

v = F¢(t,u)
and the corresponding first free boundary problem.
3*. the problem with the interface x = 0 on the domain
R(S) = R (8) U R_(6)

with

~23-
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R(&) = {(e,x)|0 <t €8, ~1¢x<o},

(6.3)
R(8) = ((e,x)[0 €t €86, g<xc< 1) '
for the following system
(%) (1)
n u (1) du
( 9
Z ‘Li)(t'x'“ t),v(t))(atj + Xit)(t,x,u(t),v(t), : ] xj
i=1
(1) () (t)
v 3 3
- c;t)(t’x'u(t)'v(t))(w_ . x;'t) (£,x,0'® 'v(t),}_:_) v
(%)
9
+ u;t)(t.x.u(*),v(*),gf-—) (L= 1,000,m) ,
(%) (1) 52 (%) (%)
3 3 E)
: - ‘(t)(t'x'“(t)'v(t)’ : )ax; - b(t)(t,x,u(t),v(t),a: )
on Rt(G) respectively,
L0 WP LB (6.4)
x= 0 uis P, B, 5L K+ 1,000,n ,
8 2
u:_) - Gt(t,u(t),v(t)) = 1,00h,
v o) D)y
(+) (=)
%— - a(t,u(*),v(t)) ;:—— + q(t.-&t) A*’ ) (a > 0)
x = t1: convenjient boundary conditions
with the following hypotheses:
Aé’)(o,o,o,o,O) <o, xé”(o,o,o,o,O) >0, T mt,iiiks Bmk+ 1,000,
(6.5)

Ai”(o,o,o,o,o) <o, A:-)(0,0,0,0,0) >0, ratuiishs SEht 1,00

-24-
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4*. The problem with free interface x = x(t) can be similarly discussed, too. This
ne the conditions on x = x(t) are the following:

x = x(t) : uéﬂ- é;(t.x.u(*).v(*)). 8=k + 1,000,n &

u:-) - G!(t,x,u(*),vu)), r=14600,h o«

) (6.6)

L) =) ),

-y + 'r(t,x,n(*

) (H (1)

(+)
3
v (1) '(*)’%i"‘ + gltax,u'? o8,

r = a{t,x,u .

()
?
%- o(e,x,utt? o1 ,ﬁ——). x(0) = 0 (6.7)

th the following hypotheses:

£"10,0,0,0,0) < 1(0,0,0,0.0) = pto), A{"10,0,0,0,0) > D(O) ,

A:_"(o,o,o,o,o) < p(0), x:‘)(o,o,o,o.m > D(0) (6.8)

(£ % 1,000,k S =Kk + 1,000,038 T = 1,000,h7 8=h + 1,e0e,n)

: the system of conservation laws, these conditions (6.6), (6.7) and (6.8) (with

=k - 1) can be obtained from the corresponding Rankine-Hugonlot's conditions and the

rresponding entropy condition respectively.

Similarly, we can consider the problem with the characteristic interface x = x(t),
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7. APPLICATION TO A CONJECTIVE GIVEN BY C. M. DAFERMOS.

The conjective given by C, M. Dafermos[3] is that incomplete parabolic damping can
preserve the smoothness of smooth initial data but is incapable of smoothening rough
initial data. For the system of one~dimensional viscoelastic materials of the rate type,
he has verified that this conjecture is true.

Now, using the preceding results we can consider this conjecture in general case.
Indeed, the system with incomplete parabolic damping is a hyperbolic-parabolic coupled
system, since the problem with the free interface (or characteristic interface) x = x(t)
is well-posed (under the corresponding conditions of solvability), if the (rough) initial
data are piecewise smooth with a discontinuity at the origin x = 0, satisfying the
corresponding conditions of compatibility (i.e. corresponding Rankine-Hugoniot's conditions
for conservation laws) and the corresponding conditione of orientability (i.e.
corresponding entropy condition), then the local solution is also plecewise smooth with a
discontinuity on x =x(t), because the corresponding conditions of solvability can be
checked in many concrete cases. Thus, incomplete parabolic damping is incapable of
smoothening rough initial data, that is to say, the second part of this conjecture is
true. On the other hand, for smooth initial data, according to the preceeding results, the
solution remains smooth locally in time, 8o the first part of this conjecture is true at
least in a local sense. As to the corresponding global existence theorem, we have to

discuss the concrete system and the problem seems yet open.
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